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Abstract

When analyzing and describing the statistical and topological characteristics
of complex networks, the aeter. geneity can provide profound and system-
atical recognition to illust.. te t} e difference of individuals, and many node
significance indices har ¢ boen avestigated to describe heterogeneity in dif-
ferent perspectives. I *F.s p.per a new node heterogeneity index based on
the von Neumann e’ .tropy .. proposed, which allows us to investigate the dif-
ferences of nodes ‘eatu s in the view of spectrum eigenvalues distribution,
and examples in o lity networks present its great performance in selecting
crucial individi als Then to lower down the computational complexity, an
approximatic 1 calc.'ation to this index is given which only depends on its
first and sec »nd aeic hbors. Furthermore, in reducing the network heterogene-
ity index bv ki 'r2 fa, this entropy heterogeneity presents excellent efficiency
in Erdos -Rény. and scale-free networks compared to other node significance
measurerents: in reducing the average clustering coefficient, this node en-
trops 1ndex could break down the cluster structures efficiently in random
geon etric ¢ raphs, even faster than clustering coefficient itself. This new
methouciogy reveals the node heterogeneity and significance in the perspec-
tiv~ c. spectrum, which provides a new insight into networks research and
pertc "ms great potentials to discover essential structural features in networks.
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1. Introduction

Networks provide us a useful tool to analyze = wide range of complex
systems, including WWW [1], the social structurs [2], ... economic behaviors
[3], and the biochemical reactions [4]. Since tie “99s, a great number of
interdisciplinary studies involving network ! ~th in .heories and empirical
work, have come up and developed new models and techniques to shed a
light on the complex structure behind the p.-ticu’ar subjects.

To extract the characteristics from netw ~rks, a number of indices have
been created to illustrate the topologic.  auu svatistical features of networks.
Among these studies, to analyze the structu.~l complexity, heterogeneity has
attracted a lot of attention. In order v d sciibe the heterogeneity of complex
networks, it is necessary to find < ~mpu‘ationally efficient methods to mea-
sure it. Snijders [5] and Bell [6] usec tu. variance of node degrees to measure
the heterogeneity of networks, i b - as regarded as the first measurement
of the network heterogeneity. Albei son [7] proposed that the sum of differ-
ences of degrees of nodes o7 .. » same edges could be applied to work as the
heterogeneity measureme t. The Gini coefficient [8] of degree distribution in
networks serves as a gre at he.~r)geneity of networks, which has been widely
used in the economics «nd sociology as the measurement of inequality. Jacob
et al. [9] got a new Tiete. ~r aeity index based on the distribution and cre-
atively used it to cr .. nare and quantify the structural complexity of different
chaotic attractors m the 1 ccurrence networks. Estrada [10] proposed a unique
measurement o hei srogeneity which is based on the differences of function
of degrees and 1.7« index could be represented by the Laplacian matrix of
the network:, w'iich means this heterogeneity index could be expressed by
the spectrui.  La’er, Hancock et al. [11] compared the von Neumann en-
tropy wi’u Estrada’s heterogeneity index and concluded that the entropy
could wcrk as a better classifier for networks and also performed the features
of the ~ige. - aues distribution in different networks. These heterogeneity
indices are widespread in the complex networks research.

A. athe  crucial subject in complex network which has received consid-
€ ..~ ~ttention is measuring the significance or importance of nodes. A
nuw er of methods distinguishing different individuals on a large-scale sys-
tem Lave been proposed to solve this problem and may of them could be




viewed as descriptions of heterogeneity of nodes in their o, m perspectives.
The degree of nodes [37] is a natural description of node am rence concerning
the number of its neighbors, and high-degree nodes prc “dr great heterogene-
ity under some average degree. The clustering coeffi~_ .nt .2, 13] reflects the
clustered patterns concerning some local structures whict produces another
useful tool to measure the heterogeneity for differen. *ar- ets. Besides, there
are many such indices to illustrate the variance n ce ... ection and function in
the network, e.g. the PageRank by Larry Page e al. [1.] would demonstrates
the heterogeneity of node neighbors links and qu. lities, and the collective in-
fluence [18] could reflect the heterogeneity « € nodes on the biggest eigenvalue
of non-backtracking matrix.

In this paper, based on the performm~»~~ -~ he von Neumann entropy in
measuring the network heterogeneity, we ;ropose to define and analyze the
entropy heterogeneity in the view p wn. * individuals, which we find that
could be used as index of node impor. .nce or significance in the networks.
In section 2 the von Neumann ent.np - aad its ability in measuring the het-
erogeneity of networks are intr~“1ce!’ Commencing from this entropy, the
heterogeneity of nodes is defined .-ith some examples, and the specific cal-
culation related to the entronv. including approximation, is presented. Next
in section 3 some experim nts ai > implemented to show the efficiency of out
proposed index in reducing I'str-.da heterogeneity and average clustering co-
efficient. These researces Huila the heterogeneity for microscopic objects in
networks with the spec..” m #ad demonstrate their superior in describing the
roles played by nod s in a new perspective.

2. Von Neum mr Entropy and Heterogeneity

2.1. Spectral Distri.tion of Eigenvalues

Given a. w.dirr cted network G(V, E), V (or V(G)) is a finite set whose
elements ~_2 nol s of the network G and E (or E(G)) is the edges set. E
is comp sed o1 unordered pairs of nodes who belong to V', namely, when
(vi,v;) € ¥ ve have (v;,v;) € E and v;,v; € V. The edge in the form of
(vi,1,) is crlled a self-loop. In this paper we only talk about the networks
withy ut sel -loops. The adjacency matrixz is an N x N matrix, where N = |V/|.
U~no A(() to denote the adjacency matrix of GG, the columns and rows of
A( are labeled by the vertices of G, and the (7, j) entry of A(G) is 1 if and
only . (v;,v;) € E(G), namely the adjacency matrix A(G) could be defined




as follows:

R ) 1

Before the introduction of von Neumann entro, v, firs ly the normalized
Laplacian matrix is introducted [19]. The degree _f a veivex v; € G, denoted
as dg(v;) or d;, is the total number of edges tou *hi» g t. is vertex. In this way
we could define the degree matriz which is e~ N ~ 7v diagonal matrix and
denoted as D(G). The entries in the degree mati. - are defined as follows:

DG = ge®) 2

The combinatorial Laplacian matriz - " ~~uld be define as L(G) = D(G) —
A(G):

delv:) Fi=j,
[L(G)]z,] = —1 i) # j, ('Ui,Uj) & E, (3)
0 otherwise.

It is worth noting tha. the L wplacian matrix will not change if the self-
loop is added or deleted. As w. can see, the Laplacian matrix is a diagonally
dominant Hermite me riv, th'.s it is positive semi-defined [20].

The normalized "aplac.~ « matriz is defined as £ = D~Y2LD~Y? and the
elements are:

1 le:.]7 dG(Ui)#Ov
[E(G)Jiu = _m if 4 7é j) (via Uj) € E7 (4)
0 otherwise.

The spec.ral dacomposition of L(G) is L(G) = PAP, where A = diag(\;)Y,
is a diag nal m atrix of eigenvalues with order 0 = A\; < Ay < --- < Ay and
® is » .aatiia whose columns are orthonormal eigenvectors corresponding to
the « rderea eigenvalues. Notice that the normalized Laplacian matrix is also
semi-..~fir d so all the eigenvalues are non-negative.

ro “he Laplacian matrix, one of the most important indices is the eigen-
valu s and they are directly related to the topological properties of the net-
work: the number of eigenvalues equalling to zero is the number of connected




components in this network and there is only one zero-eige.. alue for a con-
nected network; Ay is referred as the algebraic connec ivi v and the corre-
sponding eigenvector is known as Fiedler vector [21] [2.*1 +/hich is frequently
used to network partition [23]. By the way, for th_ norin.~lized Laplacian
matrix, all the eigenvalues satisfy 0 < \; < 2,1 < ¢ < N aad the upper limit
2 is achieved only when the network is bipartite. .~alvating the accurate
ranges of each eigenvalue is still an open problc m.

Since the eigenvalues are crucial features c. a r atrix, we believe the
distribution of the spectrum (distribution) is ta.~1 to a network concerning
the topological characteristics. Since there '~ a on¢ -to-one mapping between
the normalized Laplacian matrices and nev. orks, chis matrix contains all the
topological characteristics of a network *»==* s spectrum eigenvalues could
be viewed as a natural data reduction of 1..“rmation in statistical viewpoint.
If different nodes are removed fron .. —~twork, various changes will be
brought to its spectrum distribution. “n example of Zachary’s karate club
network [24] is show in Figure 1. ‘. »sidering the roles played by node 34
and node 1 in the club, they ar- ~ore significant than node 3, thus removing
node 34 or 1 will bring larger cha..res on the spectrum than removing node
3. Capturing the variations in spectrum distribution will lead to a significant
understanding in structur . chai zes of the network.

2.2. Entropy and Node He*eroyeneity

As a crucial way o’ lep’:ting distributions, entropy could be used to
signify the features of speccrum distribution [19]. The von Neumann en-
tropy, commencing froin.. normalized Laplacian matrix, could be regarded as
a well-designed - na sophisticated representation of network. There are many
researches relai. 1 0 von Neumann entropy and its function in describing the
network strv _ture, v hich receives quite a lot of attention in many applica-
tions [25] [4 1 [.5]. This index integrates the complete values and properties
of all the ~*zenv. "ies and thus could reflect global structural complexity and
characte "istics.

The v Neamann entropy of a network G associated with its normalized
Lap] «cian matrix £(G), denoted as S(G), is defined as [25] [19] [26]:

N
i N
S(G):—Zglng, (5)
=1

where Alog A = 0 when A = 0.
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Figure 1: Za nar' s korate club network. There are 34 members in the club and 78
links outside tu.. “lub Node 1 is the instructor and node 34 is the club administrator or
president. .1 conflic. has happened between the instructor and administrator during the
study, wh ch led 1) the split of the club. We could see that removing different nodes will
bring diffe. nt cFainges to the spectrum. Different nodes are marked by different colors.
a. TY: conrection relationship between the members. The red dots are the eigenvalues
of th Laplac an matrix in descending order. b. The changes of eigenvalues after node
1 (bluc, is ~_moved. The eigenvalues are sort in decreasing order and the points in the
g .. “*ands for the variations of eigenvalues. c. The changes of eigenvalues after node
34 e 1) is removed. d. The changes of eigenvalues after node 3 (yellow) is removed.



First proposed in thermodynamics, entropy has been wiu.'v used to mea-
sure the orderliness of systems. The von Neumann entr py (or quantum en-
tropy) has shown great success in qualifying the orga. ‘7a 10on structure and
levels in networks, and can be applied in networks .. an . dex to quantify
the network heterogeneous (homogeneous) charac eristic.. Although there
are plenty indices which describe this characterist..~ "«e the variance of
degrees, they are confined to the degree distr'put’.. and neglect the spe-
cific connection patterns and structure in the noowor’.s. For networks with
similar degree distribution yet different connecv.~n, these indices would not
accurately reflect the intrinsic topological ~tructivce. Experiments by Han
et al. [11] supports this idea. In their woil- nevworks of 5 objects form the
COIL dataset [27] are selected and the === ™ _amann entropy and Estrada
Heterogeneity of each networks are calcula'~d. For each object, the networks
are even and close to regular netw. s, =1 they own small heterogeneity
values. For different objects, the hete. .geneity values of each networks are
quite similar, which makes it hard v~ J*stinguish the 5 objects by the Estrada
heterogeneity values. Yet the v-» Newnann entropy performs good efficiency
and is able to classify the objects »uch more accurately. It is believed that
as the representation of the spectrum distribution of eigenvalues, the von
Neumann entropy would -vork a' an effective measurement of network het-
erogeneity.

Commencing from ’ nis spectrum heterogeneity, we propose the node het-
erogeneity for each noac “a nr ¢works. Accordingly, the heterogeneity of node
v can be defined as the vai.ation of von Neumann Entropy when removing
this node and edges hl=d to it from the network. Using Hg(v) to denote
the node entrop. nh«terogeneity of node v, we have

Hp(v) = [S(G) = S(G\v)]. (6)

Similarly, the etecogeneity could be defined on other structures in graph.
Let s be a subnevwork of G, and denote G \ s to be the network remained
after del ting t' e nodes in s and edges linked with these nodes. The entropy
heterr _ neiyy of subnetwork s in network G could be defined as:

Hg(s) = [5(G) = S(G'\ 5)]. (7)

o r a problem with global targets, many of them are NP hard and for a lot
of ca: ~s, it is hard to find an ultimate solution. To solve these problems, there
are many methods focusing on the global or local targets. The strategies with
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global aims often work better, for example the collective inw. ence algorithm
and its local generalization in identifying influential s re. ders. Similar to
this, our target here is to lower the global heterogeneit - of the network. It is
a complicated target considering the huge number of | sssin."*ties. To achieve
this goal, the von Neumann entropy is applied and | calizec to decompose the
global target into local ones, namely, to decompose .~ ~.obal heterogeneity
into the heterogeneity of nodes or sub-compon mt. Z-sed on this, the node
heterogeneity is proposed to decouple the glob.. het' rogeneity represented
by the von Neumann entropy into local structui. Usually the heterogeneity
refers to the state of a global or sub-compc. ent ne work and it is impossible
to define the heterogeneity for a single n.de o. individual. Here, the Hg
of one node is applied to present the r~'~~ ='- by it in the whole network
and this definition is based on the intera.*ions this node have involved. It
is proposed to indicate the influence o '*= node to the irregularity of the
network and the value depends on the g¢' bal network and its local connection
to the neighbors with various orde.s.

We believe that the import: ~~e a. 4 significance of a node originate from
its heterogeneity in the network. .’~r a regular graph with all nodes owning
similar degrees and other characteristics like betweenness and closeness, they
will undoubtedly have simr iar im »ortance and it is hard to discriminate their
roles played in the netwerk. Tow :ver, in an uneven network, when there exist
nodes that perform hi_h i regularity, like owing extremely high degrees or
playing crucial “bridei.,” rol s, the significance of these nodes stands out. A
number of node ind" “es focus on these features and different indices emphasis
on different ones. Thes. features could be regarded as the heterogeneity in
different persper v s since they make some nodes different from others and
nodes with hig. <isnificance in networks would express high heterogeneity.
The von Ne' mann .ntropy, which is a useful heterogeneity measurement,
can reflect he regriarity and complexity of the network and is effective to
characteri=~ the ~.obal structure of networks. When a node is removed, the
network will ch. nge, which leads to the change of the Laplacian matrix and its
eigenvalu.~ ths the von Neumann entropy of the network will finally change.
If de’eting node x brings larger change of S(G) than deleting node y, namely
node © own ; higher heterogeneity than node y, it proves that deleting node z
c¢~1d cause more significant change on the spectrum distribution and network
st1 ¢’ ure. Since the relationship between the network and its spectrum is
elabc -ate and profound, when removing a node from the network, the change
in von Neumann entropy will exactly present the impact of this node on the




whole network structure, which makes the entropy heteroge. ~ity of nodes a
great index for node importance and significance.

2.3. Some Examples

To further analyze the node entropy heterogenei y, som » specific networks
are used to perform and compare different node centr.'iti~, in this subsection.
The results of betweenness centrality (BC) [1)], «lo.2ness centrality (CC)
[14, 15], degree centrality (DC) and the entrop, het rogeneity on Padgett
Florentine families network and the gift-giving ..~twork are shown in Figure
2.

Degree Sort 22

Figure 2: a. Pau,~tt florentine families marital ties network. 16 nodes and 20 edges are
contained .n this network. The Pucci family did not have martial tie with others, so the
major pai- of the network is a component with 15 nodes. b. The gift-exchange network
in a Panman =" ge. There are 22 nodes and 39 edges. Each node stands for a household
and € ach ed, = stands for gift exchange. c. The degree distributions before and after the
remo al of nc le 7 or node 12 in the gift-exchange network. The x axis is the nodes sorted
by degre. .. decreasing order. The oranges short lines stand for the degrees of nodes in
o1 21ne .. swork. Blue circles are the degrees of nodes in the network with node 7 removed.
Rea ~juares are the degrees of nodes in the network with node 12 removed.




The Padgett Florentine families network is a networwn of niarital ties
among Renaissance Florentine families [28, 29]. This n twrk is built based
on historical documents and an edge between two nod. ~ 1 cans there existed
marriage alliance between the two corresponding fa-__‘lies. The network in-
cludes families who were involved in the struggle {>r the :ontrol of the city
in politics around 1430s. 16 families are contained 1.. the network and there
is a major component consisted by 15 of them TV _ ranks of each index is
shown in Table 1. As we could see, all the inu.ces r .nk the Medici as the
most influential one. This actually coincides w *h historical fact since the
Medici family is one of the most famous fai. *lies in history who reached peak
in Italian upper classes during Renaissance. The node entropy heterogeneity
is able to find out the most influentia! ¥~ , correctly as others: all the
first three families in the Hg sort appear ..> other three sorts and the Medici
family has the highest rank. This re..cc.. ““at the node heterogeneity based
on the von Neumann entropy could we k as a new reasonable and accurate
index of node importance in the nctv. ~rk and is able to exactly capture the
nodes which work as the most ‘~flue, tial ones and are crucial to the whole
network.

Table 1: Ranks of nodes of Pr dgett 1 'orentine families marital ties network in BC, CC,
DC and Hg.

Ranks  BC J 5 CC DC Hy
1st Medici Medici Medici Medici
2nd  Guadagni Ridolfi Guadagni/Strozzi  Guadagni

3rd Albizzi  A'hizzi/Tornabuon  Albizzi/Bischeri/...  Albizzi

The othe examy'e, the gift-giving network, shows the gift exchange re-
lations amc ~o 2 h ,useholds in a Papuan village [30, 31]. In this network, if
two houseb»lds - change gifts, there will be an edge between them. In this
village, he git. -exchanging is significant in life because it is regarded as a
method 1. rec.est political and economic assistance from others and works
as tr e pris‘ine market. Although there may exist deep contents and mean-
ings ~ehind the whole process in the network, yet it is natural to realize that
th~ famuy who exchanges gifts with more persons and have higher degrees
me” iave larger influence on the whole village. At the same time, since the
exche nge process could be long and complicated, like the family A may ask
family B to ask family C' to assist A, the betweenness and closeness will
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also point out influential households or persons in the netv.~rk. Thus it is
incomplete to evaluate the network with only one sing! : 1 dex and multiple
heterogeneity measurements are required to help unc -rstand the structure
and information behind the network better. As sh-. n in ‘he Table 2, the
entropy heterogeneity of nodes performs its potentil to w. rk as an all-round
index on the node significance: the first five nodes .~ H_, sort have highest
ranks in other sorts, like node 11 ranks first ir BC' .t and CC sort, node
12 ranks the second in DC sort. The all-round prope ty of Hg allows us to
find more meaningful information in the netwou.

Table 2: Ranks of nodes of gift-giving netwo.’= in BC, CC, DC and Hg.

Ranks BC CC DC Hg
1st 11 11 17 17
2nd 7 7 5/7/11/12 11
3rd 17 1..79 4 12
Ath 12 12736 1/2/3.. 7
5th 5 /10 5

There are more intere ting t. ings in the gift-giving network. A natural
question is since node 7 ran.~ b gher than 12 in both BC and CC and they
rank the same in DC, w#hy node 12 ranks higher than node 77

We infer that th's .. av -esult from the degree distribution changes of
the graph when tF. nodes are removed. Node 12 is linked with the hub
11 and when node 12 ¢. node 7 is removed, the degrees of the remained
graphs are shov a 1, table 3 and Figure 2. Here to measure the changes of
degree distribuu. v. we use the entropy — >, p;logp; to describe the degree
distributions The cntropy of the degree distribution in original graph is
0.8226. Wl.'» "10dr 12 or 7 is removed, the entropy of degree distribution is
changed 7 .00 1.2235 and 1.0357. Since the entropy indicates the irregularity
of corres nondir, 3 distribution p;, it is suggested that the removal of node 12
brings lai -~ - ariations in the degree distributions and makes the network
mor¢ even. This helps explain why node 12 ranks higher than node 7.

From networks above, the node entropy heterogeneity could be viewed
as » omprehensive measure of node importance. The Hpg takes the global
netw. vk structure and heterogeneity of the whole networks into account and
has excellent performance in selecting significant nodes in network.
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Table 3: Degree distributions when node 7 or node 12 is removed fro. the gift-giving
network.

Degrees 6 5 4 3 .=
Original 1 4 1 16 9
Remove Node 12 1 2 2 1 4
Remove Node7 1 3 0 13

2.4. Approzimation to Node Heterogeneity

To calculate all or most of the eigenvalues ot the matrix £, a number
of algorithms are studied. By a similari‘v ti.~<’ormation with orthogonal
matrix ), the matrix £ could be transformea “o an upper triangular matrix
T = QT LQ where T and £ own the same ~igenvalues. Eigenvalues of T' could
be calculated by methods like QL '=orithun [32] with complexity O(NV).
The orthogonal matrix () could be -] ulated by various methods. For a
symmetric matrix, the @ could be « <ea. “hed by Householder algorithm [33]
with complexity O(N?). For a spar:~ niatrix, Lanczos algorithm [34] could
find @ with complexity O(M N ) .-here M is the edge number of the network.

However, since in reality the scate of networks could be enormous, the
complete algorithms above are .ot applicable considering the time consum-
ing. To efficiently apply v..~ entr )py heterogeneity of nodes, the approxima-
tion of entropy will be iiscusseu in this subsection.

Expanding at x = ' v e ¢ uld easily get that

— (1—a2)"
vir)=o—-1- —_ 8
) > (5)
This series cow. 1 Fe applied to approximate the entropy by cutting off at
some index /, ana e use In(x) = x — 1 to approach the entropy. In this
situation, t' e e itroy is calculated as:

N N
A A A A
N D NN A
S ;2112 222132(2 )
N N

:%ZAi—}lZ)\f. (9)

Sivme I'r(L™) = >_,(A}), the approximated entropy could be written as:

1 1
S; = éTr(E) - ZTr(ﬁ ). (10)
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According to the definition in equation (4), Tr(L) = |V|.
To calculate Tr(L£?), with some linear algebra know’edy e it 1s concluded

that
Tr(L*) =Tr(LxL) Z Z il

—ZZﬁ —Z 2L

i=j i

~ V] +Z T (1)

i~vJ

where ¢ ~ j means node v; and node v; are ¢« ~nected. In this way, the von
Neumann entropy is approximated as:

vi_ Vi - _ v L
B L R L O S A 12
o 2 4 ;u,-dj 4 %:4(161 (12)

By this calculation, let the nc .=~k vith node v; removed be G’, the von
Neumann entropy centrality of nod~ v; is

Hg(vi) = |Si( ) = S1(G)]

|V\’“| V(&) 1 1
S D Dby Db v
g~k jek 0k

=@ 1
d 4 | Z4didj

Jri~g
1 1
- Y 13
, Z Mddy Z Ad-d (13)
Jkji~g~k J Jokyinvj~k 7k

If node v; i lirced with v;, then d; = d; — 1. Hence,

1
£ (vi) 1 Z4dd

Jstr~g Jiksine g~k

d —1ddk (14)

"o cut ff the series in equation (8) at a higher k could help improve the
accurc ~v "a order to calculated >, A;(1 — \;)¥, the sum of eigenvalues with
Lo power Y A = Tr(L') for 2 < t < k + 1 need to be solved. They
cou. . be calculated in other perspective. Taking Tr(L3) as example, since

L=D'?LD V2 =1 - D V2AD™2 (15)
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it could be got easily that

Tr[(I — £)?]
= Tr(DV?AD V2D V2 AD12D=' 2 A "1/2)
= Tr(D"Y2AD'AD ' AD~'/?)

1 1 1 1
ROV ST AT
1
=22 Xk: Gy oA 1o
i

Since

Tr[(I — L)) =Tr(I °7+oL%— L%
=Tr(I —2C)+ 3Tr(L?*) — Tr(L%), (17)

then we have

3 1
Tr(L)  ==2AVI+3IVI+ Y =D D Y T A A
7 B i kv
3 1
—weS , 18
VI+ 20, 2 G (18)

So the approximate ! entropy when cutting off at k = 2 in equation (8) is

5 11 1
Y- —|V] - — 1
52() = 151V 2 16d,d, Z 16d;d;dy (19)

1~] ZN]Nk/\/

Similar der’ vation could be applied to the situation when & > 2.

By a breau.h-"irst search algorithm [35], the neighbor-relation of nodes
in a net vork ¢ uld quickly be achieved. Then to calculate the entropy het-
erogeneil - of # node, we only need to consider all the paths starting from
this ".ode whose lengths are less than the order of cutting-off for approxima-
tion. If the neighbor-relations for each node are stored well, the calculation
compleaivy will be reduced hugely and the global calculation is simplified
anl cegenerated to local situations. This approximation will accelerate the
calcu'ation of node ranks by Hg and the time complexity will be reduced to

O(N).

14




To view the performance of this approximation method, . am.nations on
random networks are conducted. The nodes sorts by _on nlete calculation
and approximation are compared. Since compared tc *hr specific values of
Hpg, the nodes sort is what we finally get and our '.rgev, we examine the
similarity of nodes in both sorts at certain perce itages. This examine is
conducted on Erdos-Rényi (ER) networks and the imi'arities of nodes at
several top percentages are calculated. For exe mpl-, 'f there are k£ nodes in
both sorts at top y nodes ranked by the compicee ca culation and approxi-
mation, then we say the similarity at y is k/y. The results are presented in
Table 4. As we could see, it is performed ti.~t the ~nethods mentioned above
could work as an efficient and reasonable a; »rox..nation to the von Neumann
entropy method in capturing the most <i~~*¢-_at nodes.

Table 4: Similarity of nodes sorts by comy' ce calculation and approximation on ER
networks at first 10%. Each random ne.v. -k cc 1tains 1,000 nodes and 2,000 edges.

Percentage 1% ) 3% 4% 5%
Similarity 0.88 +0.09 0.92+0.00 0.92+£0.04 0.914+0.04 0.89+0.03
Percentage 6% ‘7% 8% 9% 10%

Similarity 0.88+0.03 789+ 0.03 0.90+0.04 0.92+£0.03 0.94 £0.02

3. Experiments

To further ex~! ve the properties and features of the entropy heterogeneity
of nodes, first v e di cuss its performance in reducing the heterogeneity index
of networks b Esv.~da. Then the variations in average clustering coefficient
will be pres nte 1.

3.1. Het .rogerewy Index by Estrada

Ther. exist .number of heterogeneity indices and one of the most popular
meas’ . cmeus is proposed by Estrada [10]. Firstly, the irregularity of link
conr =cting 10de v; and v; is defined as:

Lij = [f(d:) — f(d;)]*. (20)

This ‘rregularity will be zero if the pair of nodes connected by the link have
the same degree, which usually appears in regular networks. Taking the
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f(d) = d~%/? and summing the irregularity of all the links " tue network,
the heterogeneity index of network G is defined as (ass amino d # 0):

PG = "(d;V? —d; %) (21)

i~vj

This quantity is zero for regular networks, and I, will increase as the differ-
ences between the degrees of adjacent nodes i1 r_ase This index could be
expressed by Laplacian matrix. Taking |d) = fdl_l/ ,d;1/2, . ,d]_vl/z), this

heterogeneity index could be calculated as

P(G) = (d? —d;' %) = %(d‘WILId‘ By =n -2 (did;) T (22)

i~vj i~vj

The lower bound of p/(G) is attainea fo regular graphs, which is zero, and
the upper bound is attained for ¢ ~r g1 phs, which is |V| —24/|V]| —1. In
this way, the normalized heterogene'ty ndex is written as:

Z ( —1/2 d-_1/2)2

_ i\ j
p(G) = RN (23)

where 0 < p(G) < 1.

An interesting pro! ten is I ow to reduce the network heterogeneity as fast
as possible by remo ing . ~es. It is regarded that the star network which
has only one cente’ 1.°de and N — 1 leaves has the highest heterogeneity and
the p(G) equals t~ 1. Removing the center is the fastest method to reduce
the heterogenei y o the star network and p(G) will decrease to zero, which
makes sense since ~bviously the center node is the most heterogeneous one.
Yet in real v orl i, the networks are much more complex than star networks
and it is ha.’ to dnd the centers or hubs. Also, although nodes in the
regular r ctworks nave the same degrees, the structure of the network could
be vario 's, whi :h makes the statuses of nodes in networks vary a lot. The
hubs - 2 no. uetermined by degree anymore. More information is required
to a curate y signify the node importance and significance.

W. nreosed to apply node entropy heterogeneity to this problem. Firstly
tv o .. of all nodes are calculated and node with the highest Hg value is
rem ved from the network, and then the same process is repeated until the
desired heterogeneity is achieve.
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Figure 3a shows the variations of p(G) as nodes are ren. ved in ER net-
works. The Hg is compared to several other indices or t1 > sane networks:
DC, BC, CC, eigenvector centrality (EC) [36], Page >ar« (FR) [17], high
degree adaptive (HDA), and collective influence (C'7; [1&). It is illustrated
that the node entropy heterogeneity outperforms ¢ | the ¢ ther ones. Similar
results are shown in scale-free (SF) [37] networks in ™io1_e 3b.

* DC
* BC

cc
*Cl

EC
* PR
* HDA
o H

ooaf g,c R
j%?#h - * ¥??§

0.02 { * HDA
3 . He ! $
0.0 0.03
o 40 80 ,120 160 200 N o 40 80,120 160 200 , '
0 50 100 150 200 0 50 100 150 200
Number of Deleted Node- Number of Deleted Nodes

Figure 3: a. p(G) in ER ne work. ™ .e results are the average values of 20 ER networks.
Each network contains 1,C 0 » ,des and 2,000 edges. The performances of degree central-
ity, betweenness centrality, ." senr ss centrality, collective influence, eigenvector centrality,
Page Rank, high degre - adaptive and node entropy heterogeneity are represented in dif-
ferent colors. Inside f gurc >resents several error bars of the data. b. p(G) in SF network.
The points are the -erage of 20 network with 1,000 nodes and v = 3. Inside figure
presents several er or I ars of the data.

Accordi. @ t) de.inition, an ER network is composed by nodes and links
between e~-h L i of nodes with the same probability, thus the node de-
grees ar : simil r to each other and the whole network looks homogeneous
in their c.nnescion pattern. That’s why compared to SF networks, the ER
networks cwn lower p(G) values and the centralities work less effective in
redu. ing t} e heterogeneity of networks. Yet it is observed that the node
entrony neterogeneity works well in both ER and SF networks and it could
eft.~icatly capture the nodes with high heterogeneity and increase the net-
work homogeneity. In the SF networks, the similar effects are observed in
several measurements including DC, BC, HDA and PR. That’s because there
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exist extremely high-degree nodes, and the heterogeneity . the whole net-
work concentrates on these hubs, which leads to simi'ar indings by these
centrality.

3.2. Average Clustering Coefficient

Another fascinating phenomenon related to the n. e - atropy heterogene-
ity is the variation in average clustering coeffici :nt. e global average clus-
tering coefficient of a network is defined as ' = =37 _, Ci, where Cj is the
clustering coefficient (CLC) of node v;

_ 2{(vj, k) € E: (vi,v5) S B, o) € B

Ci d;(d; — 1)

(24)
which indicates how well the neighbrre of node v; are connected. This index
is also a measurement of network he erogeneity concerning the connection
of node neighbors. If the neight, ..~ o1 2 node are highly connected, then
this node owns high CLC and it is =aic to say that the local region where
this node belongs to is dense, wrcu w.ieans connective heterogeneity in this
region compared to low CLC ndoes.

In the random geometri_ g1 hs (RGGs) [38], every time a nodes with the
highest Hg is removed, tl. <¢loba average clustering coefficient is calculated.
We find that in the com sarison vith others including PR, DC, CC, CLC, EC,
the Hy brings amuch aor :rar id decrease of C' (Figure 4a). It is worth noting
that the reduction ¢ .usea '~ Hp is even more significant than by CLC itself,
which suggests th-.t .~ removal by the node entropy heterogeneity brings
more structural < -mages than others to RGGs. This phenomenon does not
appear in SF n twc.ks and ER networks.

Actually, his henomenon is deeply related to the special topological
features of "uGC.s. The RGGs are the networks whose nodes are scattered
randomly in . dir .ension space. If the distance between two nodes is less
than a st ecific threshold r, then these two nodes are linked. One of the most
importai t proy erty of RGGs is that the cluster or modularity structure is
striki~.g ana vhere are a lot of large or small clusters in each RGG. Nodes
insic = each :luster are densely connected and less connected to outliers. This
point .. »1.0 supported by the significance of BC in reducing the size of giant
cenpr ..oat (Figure 4c¢) since the BC breaks down the giant components fast,
whic \ means there are a few nodes working as bridges between clusters and
own highest BC values.
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Figure 4: a. Average clustering coeflicie..; in RGGs. The results are the average val-
ues of 20 RGGs. Each networ! __~tains 1,000 nodes scattered in a 3-dimension space
and the average degree aroun . 4.3. 'y he performances of degree centrality, betweenness
centrality,closeness centrality, co.’~ctiv : influence, eigenvector centrality, PageRank, HDA,
clustering coefficient, and - ode entrcpy heterogeneity are represented in different colors.
Inside figure presents seve =l e cor } ars of the data. b. The variations of the von Neumann
entropy in RGGs. c. Si'e of y'>n connective component in RGGs.

Figure 5 show - a cluster composed of seven nodes. By definition, cluster-
ing coefficier ¢s ¢ nodes v, to vg are all C%% = % and node vy is cig = % Yet
when node v, whi_h owns the highest Hp is removed, the C' of this whole
cluster ic brovehy down to zero. That’s the reason why the node entropy
heteroge veity causes larger reduction in average clustering coefficient than
CLC ‘. RGGs in the experiments. Also, this phenomenon suggests that Hg
does obtair the centre nodes or hubs in the networks efficiently and is able
to bre. '~ 2 uwn the cluster structures rapidly.

19




o K

2
O Average Clustering Coeffic 2nt = 15/ 1

e

Average Clu *ering Coeffi ient =0

0

O @

Figure 5: An example of cluster. Node v7; owns he lowest clustering coefficient, yet
removing node v; will decrease the C' to 0.

3.3. General Relativity and Quar. -m Crsmology collaboration network

To apply our discoveries above, e. neiiments of Estrada heterogeneity and
average clustering coefficients a. > couducted on the General Relativity and
Quantum Cosmology (GR-QC) collavoration network [46]. This network is a
paper co-authorship netwo « ai. ' captures the papers of the GR-QC category
on arXiv from January 1522 to / pril 2003. The nodes in the network stand
for researchers and if tv o resew. cher co-author one paper, then there will be
an edge between the wo noces. Results on this network are presented on
Figure 6.

As we could s e, » accordance with the results on random networks,
the Hg is still t'.~ fastest method to reducing the Estrada heterogeneity
and average cl ster ng coefficient. The Hg method could capture the most
influential ncdes 1. the networks accurately. Since the results on GR-QC
network are mc.e similar to the SF networks than ER networks, we infer
that this net..~rk performs SF property to some extent. Also, removing
the most signiScant nodes found by Hg could reduce the average clustering
coefficier ¢ fast. This means that this network performs similar topological
featu- os to nuaGs and there exist a number of small groups inside which the
conit 2ction s denser. These nodes play crucial roles in many collaboration
groups.
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entropy heterogeneity are represente ... it vent colors. b. Average clustering coefficient
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4. Conclusion and T, iscassion

In this paper the node ~r ¢cropy heterogeneity based on von Neumann en-
tropy is discussed, w..'~h makes it possible to study the significance of nodes
in the perspective ~f structural complexity and heterogeneity. By comparing
the heterogene’.y c¢. nodes with classical node centrality, it is shown that
the Hg is an ~ll-1e 'nd measurement of node importance. By comparing the
changes of ".str .da heterogeneity of networks and average clustering coef-
ficient with ¢. rer eterogeneity indices when deleting high Hg nodes, it is
conclude 1 that this node entropy heterogeneity has an excellent performance
in break.ng dov n network structure and can capture the significant features.

T" .. inucx could be applied to find the most influential nodes in real-
worl 1 netw. rks. It could be used to find the uneven parts in many kinds of
netwo. -« ~ad help managers identify crucial nodes. For example, this method
co'ua o applied to the markets networks to analyze the different roles played
by . irious participants. Also, this measurement could help identify some
topological features in the networks. More experiments on various networks
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with different structural characteristics are expected to unco. ' more features
of this index.

Another advantage of the node heterogeneity is the.* th s definition could
be expanded to mesoscopic subjects, like motifs. T-- 200, Alon et al. [39]
introduced the idea of motif when they were stt lying he gene network,
which is defined as the recurring, significant sub-nev.orl-, and patterns in a
network, and it is discovered that the frequenc es o7 . ome specific motifs in
realistic networks are much more significant by compe -ing with random net-
works [40]. Since motifs emphasize on the strucy re and connection patterns
which could not be found by only observi. ~ sing) : nodes, node centralities
could not capture the structural characteri.~tiown. completely. Also, for many
node centralities, like eigenvector centr~'i*-- ~= _ closeness centrality, they are
hard to be generalized to motifs directly. The index provides an access to
evaluate and measure the significanc » vi | ~cific structure on the global net-
work and a new perspective to stindy 1. cwork structural features.

Since a great number of real-wot.! aata is directed, it is worth defining
and researching the von Neur ~»n ¢~ directed networks. Chung provided
a definition of Laplacian matrix ~m directed networks [41] using Perron-
Frobenius Theorem [20] and based on this work, Ye et al. [42] proposed
a method to approximate the v 'n Neumann entropy of directed networks,
which allows us to compute “he son Neumann entropy in terms of in-degree
and out-degree of node sir ply. However, these results only work on strongly-
connected directed nev, ~cks Another definition involving incidence matrix
[43], loses the direct on infor mation when calculating the Laplacian. It is still
an open problem .o de. e the von Neumann entropy on directed networks
generally.
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