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Abstract

When analyzing and describing the statistical and topological characteristics
of complex networks, the heterogeneity can provide profound and system-
atical recognition to illustrate the difference of individuals, and many node
significance indices have been investigated to describe heterogeneity in dif-
ferent perspectives. In this paper a new node heterogeneity index based on
the von Neumann entropy is proposed, which allows us to investigate the dif-
ferences of nodes features in the view of spectrum eigenvalues distribution,
and examples in reality networks present its great performance in selecting
crucial individuals. Then to lower down the computational complexity, an
approximation calculation to this index is given which only depends on its
first and second neighbors. Furthermore, in reducing the network heterogene-
ity index by Estrada, this entropy heterogeneity presents excellent efficiency
in Erdös-Rényi and scale-free networks compared to other node significance
measurements; in reducing the average clustering coefficient, this node en-
tropy index could break down the cluster structures efficiently in random
geometric graphs, even faster than clustering coefficient itself. This new
methodology reveals the node heterogeneity and significance in the perspec-
tive of spectrum, which provides a new insight into networks research and
performs great potentials to discover essential structural features in networks.
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1. Introduction

Networks provide us a useful tool to analyze a wide range of complex
systems, including WWW [1], the social structure [2], the economic behaviors
[3], and the biochemical reactions [4]. Since the 1990s, a great number of
interdisciplinary studies involving network both in theories and empirical
work, have come up and developed new models and techniques to shed a
light on the complex structure behind the particular subjects.

To extract the characteristics from networks, a number of indices have
been created to illustrate the topological and statistical features of networks.
Among these studies, to analyze the structural complexity, heterogeneity has
attracted a lot of attention. In order to describe the heterogeneity of complex
networks, it is necessary to find computationally efficient methods to mea-
sure it. Snijders [5] and Bell [6] used the variance of node degrees to measure
the heterogeneity of networks, which was regarded as the first measurement
of the network heterogeneity. Albertson [7] proposed that the sum of differ-
ences of degrees of nodes on the same edges could be applied to work as the
heterogeneity measurement. The Gini coefficient [8] of degree distribution in
networks serves as a great heterogeneity of networks, which has been widely
used in the economics and sociology as the measurement of inequality. Jacob
et al. [9] got a new heterogeneity index based on the distribution and cre-
atively used it to compare and quantify the structural complexity of different
chaotic attractors in the recurrence networks. Estrada [10] proposed a unique
measurement of heterogeneity which is based on the differences of function
of degrees and this index could be represented by the Laplacian matrix of
the networks, which means this heterogeneity index could be expressed by
the spectrum. Later, Hancock et al. [11] compared the von Neumann en-
tropy with Estrada’s heterogeneity index and concluded that the entropy
could work as a better classifier for networks and also performed the features
of the eigenvalues distribution in different networks. These heterogeneity
indices are widespread in the complex networks research.

Another crucial subject in complex network which has received consid-
erable attention is measuring the significance or importance of nodes. A
number of methods distinguishing different individuals on a large-scale sys-
tem have been proposed to solve this problem and may of them could be
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viewed as descriptions of heterogeneity of nodes in their own perspectives.
The degree of nodes [37] is a natural description of node difference concerning
the number of its neighbors, and high-degree nodes provide great heterogene-
ity under some average degree. The clustering coefficient [12, 13] reflects the
clustered patterns concerning some local structures, which produces another
useful tool to measure the heterogeneity for different targets. Besides, there
are many such indices to illustrate the variance in connection and function in
the network, e.g. the PageRank by Larry Page et al. [17] would demonstrates
the heterogeneity of node neighbors links and qualities, and the collective in-
fluence [18] could reflect the heterogeneity of nodes on the biggest eigenvalue
of non-backtracking matrix.

In this paper, based on the performance of the von Neumann entropy in
measuring the network heterogeneity, we propose to define and analyze the
entropy heterogeneity in the view point of individuals, which we find that
could be used as index of node importance or significance in the networks.
In section 2 the von Neumann entropy and its ability in measuring the het-
erogeneity of networks are introduced. Commencing from this entropy, the
heterogeneity of nodes is defined with some examples, and the specific cal-
culation related to the entropy, including approximation, is presented. Next
in section 3 some experiments are implemented to show the efficiency of out
proposed index in reducing Estrada heterogeneity and average clustering co-
efficient. These researches build the heterogeneity for microscopic objects in
networks with the spectrum and demonstrate their superior in describing the
roles played by nodes in a new perspective.

2. Von Neumann Entropy and Heterogeneity

2.1. Spectral Distribution of Eigenvalues

Given an undirected network G(V,E), V (or V (G)) is a finite set whose
elements are nodes of the network G and E (or E(G)) is the edges set. E
is composed of unordered pairs of nodes who belong to V , namely, when
(vi, vj) ∈ E, we have (vj, vi) ∈ E and vi, vj ∈ V . The edge in the form of
(vi, vi) is called a self-loop. In this paper we only talk about the networks
without self-loops. The adjacency matrix is an N×N matrix, where N = |V |.
Using A(G) to denote the adjacency matrix of G, the columns and rows of
A(G) are labeled by the vertices of G, and the (i, j) entry of A(G) is 1 if and
only if (vi, vj) ∈ E(G), namely the adjacency matrix A(G) could be defined
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as follows:

[A(G)]i,j =

{
1 if (vi, vj) ∈ E,
0 if (vi, vj) /∈ E. (1)

Before the introduction of von Neumann entropy, firstly the normalized
Laplacian matrix is introducted [19]. The degree of a vertex vi ∈ G, denoted
as dG(vi) or di, is the total number of edges touching this vertex. In this way
we could define the degree matrix which is an N × N diagonal matrix and
denoted as D(G). The entries in the degree matrix are defined as follows:

[D(G)]i,j =

{
dG(vi) if i = j,
0 if i 6= j.

(2)

The combinatorial Laplacian matrix L(G) could be define as L(G) = D(G)−
A(G):

[L(G)]i,j =





dG(vi) if i = j,
−1 if i 6= j, (vi, vj) ∈ E,
0 otherwise.

(3)

It is worth noting that the Laplacian matrix will not change if the self-
loop is added or deleted. As we can see, the Laplacian matrix is a diagonally
dominant Hermite matrix, thus it is positive semi-defined [20].

The normalized Laplacian matrix is defined as L = D−1/2LD−1/2 and the
elements are:

[L(G)]i,j =





1 if i = j, dG(vi) 6= 0,
− 1√

dG(vi)dG(vj)
if i 6= j, (vi, vj) ∈ E,

0 otherwise.

(4)

The spectral decomposition of L(G) is L(G) = ΦΛΦ, where Λ = diag(λi)
N
i=1

is a diagonal matrix of eigenvalues with order 0 = λ1 ≤ λ2 ≤ · · · ≤ λN and
Φ is a matrix whose columns are orthonormal eigenvectors corresponding to
the ordered eigenvalues. Notice that the normalized Laplacian matrix is also
semi-defined so all the eigenvalues are non-negative.

For the Laplacian matrix, one of the most important indices is the eigen-
values and they are directly related to the topological properties of the net-
work: the number of eigenvalues equalling to zero is the number of connected
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components in this network and there is only one zero-eigenvalue for a con-
nected network; λ2 is referred as the algebraic connectivity and the corre-
sponding eigenvector is known as Fiedler vector [21] [22], which is frequently
used to network partition [23]. By the way, for the normalized Laplacian
matrix, all the eigenvalues satisfy 0 ≤ λi ≤ 2, 1 ≤ i ≤ N and the upper limit
2 is achieved only when the network is bipartite. Evaluating the accurate
ranges of each eigenvalue is still an open problem.

Since the eigenvalues are crucial features of a matrix, we believe the
distribution of the spectrum (distribution) is fatal to a network concerning
the topological characteristics. Since there is a one-to-one mapping between
the normalized Laplacian matrices and networks, this matrix contains all the
topological characteristics of a network, thus the spectrum eigenvalues could
be viewed as a natural data reduction of information in statistical viewpoint.
If different nodes are removed from the network, various changes will be
brought to its spectrum distribution. An example of Zachary’s karate club
network [24] is show in Figure 1. Considering the roles played by node 34
and node 1 in the club, they are more significant than node 3, thus removing
node 34 or 1 will bring larger changes on the spectrum than removing node
3. Capturing the variations in spectrum distribution will lead to a significant
understanding in structural changes of the network.

2.2. Entropy and Node Heterogeneity

As a crucial way of depicting distributions, entropy could be used to
signify the features of spectrum distribution [19]. The von Neumann en-
tropy, commencing from normalized Laplacian matrix, could be regarded as
a well-designed and sophisticated representation of network. There are many
researches related to von Neumann entropy and its function in describing the
network structure, which receives quite a lot of attention in many applica-
tions [25] [44] [45]. This index integrates the complete values and properties
of all the eigenvalues and thus could reflect global structural complexity and
characteristics.

The von Neumann entropy of a network G associated with its normalized
Laplacian matrix L(G), denoted as S(G), is defined as [25] [19] [26]:

S(G) = −
N∑

i=1

λi
2

ln
λi
2
, (5)

where λ log λ = 0 when λ = 0.
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Figure 1: Zachary’s karate club network. There are 34 members in the club and 78
links outside the club. Node 1 is the instructor and node 34 is the club administrator or
president. A conflict has happened between the instructor and administrator during the
study, which led to the split of the club. We could see that removing different nodes will
bring different changes to the spectrum. Different nodes are marked by different colors.
a. The connection relationship between the members. The red dots are the eigenvalues
of the Laplacian matrix in descending order. b. The changes of eigenvalues after node
1 (blue) is removed. The eigenvalues are sort in decreasing order and the points in the
graph stands for the variations of eigenvalues. c. The changes of eigenvalues after node
34 (red) is removed. d. The changes of eigenvalues after node 3 (yellow) is removed.
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First proposed in thermodynamics, entropy has been widely used to mea-
sure the orderliness of systems. The von Neumann entropy (or quantum en-
tropy) has shown great success in qualifying the organization structure and
levels in networks, and can be applied in networks as an index to quantify
the network heterogeneous (homogeneous) characteristics. Although there
are plenty indices which describe this characteristics, like the variance of
degrees, they are confined to the degree distribution and neglect the spe-
cific connection patterns and structure in the networks. For networks with
similar degree distribution yet different connection, these indices would not
accurately reflect the intrinsic topological structure. Experiments by Han
et al. [11] supports this idea. In their work, networks of 5 objects form the
COIL dataset [27] are selected and the von Neumann entropy and Estrada
Heterogeneity of each networks are calculated. For each object, the networks
are even and close to regular networks and they own small heterogeneity
values. For different objects, the heterogeneity values of each networks are
quite similar, which makes it hard to distinguish the 5 objects by the Estrada
heterogeneity values. Yet the von Neumann entropy performs good efficiency
and is able to classify the objects much more accurately. It is believed that
as the representation of the spectrum distribution of eigenvalues, the von
Neumann entropy would work as an effective measurement of network het-
erogeneity.

Commencing from this spectrum heterogeneity, we propose the node het-
erogeneity for each node in networks. Accordingly, the heterogeneity of node
v can be defined as the variation of von Neumann Entropy when removing
this node and edges linked to it from the network. Using HE(v) to denote
the node entropy heterogeneity of node v, we have

HE(v) = |S(G)− S(G \ v)|. (6)

Similarly, the heterogeneity could be defined on other structures in graph.
Let s be a subnetwork of G, and denote G \ s to be the network remained
after deleting the nodes in s and edges linked with these nodes. The entropy
heterogeneity of subnetwork s in network G could be defined as:

HE(s) = |S(G)− S(G \ s)|. (7)

For a problem with global targets, many of them are NP hard and for a lot
of cases, it is hard to find an ultimate solution. To solve these problems, there
are many methods focusing on the global or local targets. The strategies with
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global aims often work better, for example the collective influence algorithm
and its local generalization in identifying influential spreaders. Similar to
this, our target here is to lower the global heterogeneity of the network. It is
a complicated target considering the huge number of possibilities. To achieve
this goal, the von Neumann entropy is applied and localized to decompose the
global target into local ones, namely, to decompose the global heterogeneity
into the heterogeneity of nodes or sub-component. Based on this, the node
heterogeneity is proposed to decouple the global heterogeneity represented
by the von Neumann entropy into local structure. Usually the heterogeneity
refers to the state of a global or sub-component network and it is impossible
to define the heterogeneity for a single node or individual. Here, the HE

of one node is applied to present the roles play by it in the whole network
and this definition is based on the interactions this node have involved. It
is proposed to indicate the influence of this node to the irregularity of the
network and the value depends on the global network and its local connection
to the neighbors with various orders.

We believe that the importance and significance of a node originate from
its heterogeneity in the network. For a regular graph with all nodes owning
similar degrees and other characteristics like betweenness and closeness, they
will undoubtedly have similar importance and it is hard to discriminate their
roles played in the network. However, in an uneven network, when there exist
nodes that perform high irregularity, like owing extremely high degrees or
playing crucial “bridging” roles, the significance of these nodes stands out. A
number of node indices focus on these features and different indices emphasis
on different ones. These features could be regarded as the heterogeneity in
different perspectives since they make some nodes different from others and
nodes with high significance in networks would express high heterogeneity.
The von Neumann entropy, which is a useful heterogeneity measurement,
can reflect the regularity and complexity of the network and is effective to
characterize the global structure of networks. When a node is removed, the
network will change, which leads to the change of the Laplacian matrix and its
eigenvalues, thus the von Neumann entropy of the network will finally change.
If deleting node x brings larger change of S(G) than deleting node y, namely
node x owns higher heterogeneity than node y, it proves that deleting node x
could cause more significant change on the spectrum distribution and network
structure. Since the relationship between the network and its spectrum is
elaborate and profound, when removing a node from the network, the change
in von Neumann entropy will exactly present the impact of this node on the
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whole network structure, which makes the entropy heterogeneity of nodes a
great index for node importance and significance.

2.3. Some Examples

To further analyze the node entropy heterogeneity, some specific networks
are used to perform and compare different node centralities in this subsection.
The results of betweenness centrality (BC) [16], closeness centrality (CC)
[14, 15], degree centrality (DC) and the entropy heterogeneity on Padgett
Florentine families network and the gift-giving network are shown in Figure
2.

0
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221

Figure 2: a. Padgett Florentine families marital ties network. 16 nodes and 20 edges are
contained in this network. The Pucci family did not have martial tie with others, so the
major part of the network is a component with 15 nodes. b. The gift-exchange network
in a Papuan village. There are 22 nodes and 39 edges. Each node stands for a household
and each edge stands for gift exchange. c. The degree distributions before and after the
removal of node 7 or node 12 in the gift-exchange network. The x axis is the nodes sorted
by degree in decreasing order. The oranges short lines stand for the degrees of nodes in
original network. Blue circles are the degrees of nodes in the network with node 7 removed.
Red squares are the degrees of nodes in the network with node 12 removed.
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The Padgett Florentine families network is a network of marital ties
among Renaissance Florentine families [28, 29]. This network is built based
on historical documents and an edge between two nodes means there existed
marriage alliance between the two corresponding families. The network in-
cludes families who were involved in the struggle for the control of the city
in politics around 1430s. 16 families are contained in the network and there
is a major component consisted by 15 of them. The ranks of each index is
shown in Table 1. As we could see, all the indices rank the Medici as the
most influential one. This actually coincides with historical fact since the
Medici family is one of the most famous families in history who reached peak
in Italian upper classes during Renaissance. The node entropy heterogeneity
is able to find out the most influential families correctly as others: all the
first three families in the HE sort appear in other three sorts and the Medici
family has the highest rank. This reflects that the node heterogeneity based
on the von Neumann entropy could work as a new reasonable and accurate
index of node importance in the network and is able to exactly capture the
nodes which work as the most influential ones and are crucial to the whole
network.

Table 1: Ranks of nodes of Padgett Florentine families marital ties network in BC, CC,
DC and HE .

Ranks BC CC DC HE

1st Medici Medici Medici Medici
2nd Guadagni Ridolfi Guadagni/Strozzi Guadagni
3rd Albizzi Albizzi/Tornabuon Albizzi/Bischeri/... Albizzi

The other example, the gift-giving network, shows the gift exchange re-
lations among 22 households in a Papuan village [30, 31]. In this network, if
two households exchange gifts, there will be an edge between them. In this
village, the gift-exchanging is significant in life because it is regarded as a
method to request political and economic assistance from others and works
as the pristine market. Although there may exist deep contents and mean-
ings behind the whole process in the network, yet it is natural to realize that
the family who exchanges gifts with more persons and have higher degrees
may have larger influence on the whole village. At the same time, since the
exchange process could be long and complicated, like the family A may ask
family B to ask family C to assist A, the betweenness and closeness will
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also point out influential households or persons in the network. Thus it is
incomplete to evaluate the network with only one single index and multiple
heterogeneity measurements are required to help understand the structure
and information behind the network better. As shown in the Table 2, the
entropy heterogeneity of nodes performs its potential to work as an all-round
index on the node significance: the first five nodes in HE sort have highest
ranks in other sorts, like node 11 ranks first in BC sort and CC sort, node
12 ranks the second in DC sort. The all-round property of HE allows us to
find more meaningful information in the network.

Table 2: Ranks of nodes of gift-giving network in BC, CC, DC and HE .

Ranks BC CC DC HE

1st 11 11 17 17
2nd 7 7 5/7/11/12 11
3rd 17 17/19 4 12
4th 12 12/16 1/2/3... 7
5th 5 4/18 5

There are more interesting things in the gift-giving network. A natural
question is since node 7 ranks higher than 12 in both BC and CC and they
rank the same in DC, why node 12 ranks higher than node 7?

We infer that this may result from the degree distribution changes of
the graph when the nodes are removed. Node 12 is linked with the hub
11 and when node 12 or node 7 is removed, the degrees of the remained
graphs are shown in table 3 and Figure 2. Here to measure the changes of
degree distribution, we use the entropy −∑i pi log pi to describe the degree
distributions. The entropy of the degree distribution in original graph is
0.8226. While node 12 or 7 is removed, the entropy of degree distribution is
changed into 1.2285 and 1.0357. Since the entropy indicates the irregularity
of corresponding distribution pi, it is suggested that the removal of node 12
brings larger variations in the degree distributions and makes the network
more even. This helps explain why node 12 ranks higher than node 7.

From networks above, the node entropy heterogeneity could be viewed
as a comprehensive measure of node importance. The HE takes the global
network structure and heterogeneity of the whole networks into account and
has excellent performance in selecting significant nodes in network.
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Table 3: Degree distributions when node 7 or node 12 is removed from the gift-giving
network.

Degrees 6 5 4 3 2
Original 1 4 1 16 0

Remove Node 12 1 2 2 12 4
Remove Node 7 1 3 0 13 4

2.4. Approximation to Node Heterogeneity

To calculate all or most of the eigenvalues of the matrix L, a number
of algorithms are studied. By a similarity transformation with orthogonal
matrix Q, the matrix L could be transformed to an upper triangular matrix
T = QTLQ where T and L own the same eigenvalues. Eigenvalues of T could
be calculated by methods like QL algorithm [32] with complexity O(N).
The orthogonal matrix Q could be calculated by various methods. For a
symmetric matrix, the Q could be researched by Householder algorithm [33]
with complexity O(N3). For a sparse matrix, Lanczos algorithm [34] could
find Q with complexity O(MN) where M is the edge number of the network.

However, since in reality the scale of networks could be enormous, the
complete algorithms above are not applicable considering the time consum-
ing. To efficiently apply the entropy heterogeneity of nodes, the approxima-
tion of entropy will be discussed in this subsection.

Expanding at x = 1, we could easily get that

ln(x) = x− 1−
∞∑

k=2

(1− x)k

k
. (8)

This series could be applied to approximate the entropy by cutting off at
some index k, and we use ln(x) = x − 1 to approach the entropy. In this
situation, the entropy is calculated as:

S = −
N∑

i=1

λi
2

ln
λi
2

w
N∑

i=1

λi
2

(
λi
2
− 1)

=
1

2

N∑

i=1

λi −
1

4

N∑

i=1

λ2i . (9)

Since Tr(Ln) =
∑

i(λ
n
i ), the approximated entropy could be written as:

S1 =
1

2
Tr(L)− 1

4
Tr(L2). (10)

12



According to the definition in equation (4), Tr(L) = |V |.
To calculate Tr(L2), with some linear algebra knowledge, it is concluded

that

Tr(L2) = Tr(L × L) =
∑

i

∑

j

LijLj,i

=
∑

i

∑

j

L2
ij =

∑

i=j

L2
ij +

∑

i 6=j

L2
ij

= |V |+
∑

i∼j

1

didj
, (11)

where i ∼ j means node vi and node vj are connected. In this way, the von
Neumann entropy is approximated as:

S1 =
|V |
2
− |V |

4
−
∑

i∼j

1

4didj
=
|V |
4
−
∑

i∼j

1

4didj
. (12)

By this calculation, let the network with node vi removed be G′, the von
Neumann entropy centrality of node vi is

HE(vi) w |S1(G)− S1(G
′)|

= | |V (G)|
4

− ||V (G′)|
4
| −
∑

j∼k

1

4djdk
+
∑

j∼k

1

4d′jd
′
k

= | |V (G)| − |V (G′)|
4

| −
∑

j,i∼j

1

4didj

−
∑

j,k,i∼j∼k

1

4djdk
+

∑

j,k,i∼j∼k

1

4d′jd
′
k

(13)

If node vj is linked with vi, then d′j = dj − 1. Hence,

HE(vi) w 1

4
−
∑

j,i∼j

1

4didj
+

∑

j,k,i∼j∼k

1

4(dj − 1)djdk
(14)

To cut off the series in equation (8) at a higher k could help improve the
accuracy. In order to calculated

∑
i λi(1− λi)k, the sum of eigenvalues with

higher power
∑

i λ
t
i = Tr(Lt) for 2 ≤ t ≤ k + 1 need to be solved. They

could be calculated in other perspective. Taking Tr(L3) as example, since

L = D−1/2LD−1/2 = I −D−1/2AD−1/2, (15)
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it could be got easily that

Tr[(I − L)3]

= Tr(D−1/2AD−1/2D−1/2AD−1/2D−1/2AD−1/2)

= Tr(D−1/2AD−1AD−1AD−1/2)

=
∑

i

∑

j

∑

k

1√
di
Aij

1

dj
Ajk

1

dk
Aki

1√
di

=
∑

i

∑

j

∑

k

1

didjdk
AijAjkAki. (16)

Since

Tr[(I − L)3] = Tr(I − 3L+ 3L2 − L3)

= Tr(I − 3L) + 3Tr(L2)− Tr(L3), (17)

then we have

Tr(L3) = −2|V |+ 3|V |+
∑

i∼j

3

didj
−
∑

i

∑

j

∑

k

1

didjdk
AijAjkAki

= |V |+
∑

i∼j

3

didj
−

∑

i∼j∼k∼i

1

didjdk
. (18)

So the approximated entropy when cutting off at k = 2 in equation (8) is

S2(G) =
5

16
|V | −

∑

i∼j

11

16didj
+

∑

i∼j∼k∼i

1

16didjdk
. (19)

Similar derivation could be applied to the situation when k > 2.
By a breadth-first search algorithm [35], the neighbor-relation of nodes

in a network could quickly be achieved. Then to calculate the entropy het-
erogeneity of a node, we only need to consider all the paths starting from
this node whose lengths are less than the order of cutting-off for approxima-
tion. If the neighbor-relations for each node are stored well, the calculation
complexity will be reduced hugely and the global calculation is simplified
and degenerated to local situations. This approximation will accelerate the
calculation of node ranks by HE and the time complexity will be reduced to
O(N).
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To view the performance of this approximation method, examinations on
random networks are conducted. The nodes sorts by complete calculation
and approximation are compared. Since compared to the specific values of
HE, the nodes sort is what we finally get and our target, we examine the
similarity of nodes in both sorts at certain percentages. This examine is
conducted on Erdös-Rényi (ER) networks and the similarities of nodes at
several top percentages are calculated. For example, if there are k nodes in
both sorts at top y nodes ranked by the complete calculation and approxi-
mation, then we say the similarity at y is k/y. The results are presented in
Table 4. As we could see, it is performed that the methods mentioned above
could work as an efficient and reasonable approximation to the von Neumann
entropy method in capturing the most significant nodes.

Table 4: Similarity of nodes sorts by complete calculation and approximation on ER
networks at first 10%. Each random network contains 1,000 nodes and 2,000 edges.

Percentage 1% 2% 3% 4% 5%
Similarity 0.88± 0.09 0.92± 0.05 0.92± 0.04 0.91± 0.04 0.89± 0.03
Percentage 6% 7% 8% 9% 10%
Similarity 0.88± 0.03 0.89± 0.03 0.90± 0.04 0.92± 0.03 0.94± 0.02

3. Experiments

To further explore the properties and features of the entropy heterogeneity
of nodes, first we discuss its performance in reducing the heterogeneity index
of networks by Estrada. Then the variations in average clustering coefficient
will be presented.

3.1. Heterogeneity Index by Estrada

There exist a number of heterogeneity indices and one of the most popular
measurements is proposed by Estrada [10]. Firstly, the irregularity of link
connecting node vi and vj is defined as:

Ii,j = [f(di)− f(dj)]
2. (20)

This irregularity will be zero if the pair of nodes connected by the link have
the same degree, which usually appears in regular networks. Taking the
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f(d) = d−1/2 and summing the irregularity of all the links in the network,
the heterogeneity index of network G is defined as (assuming d 6= 0):

ρ′(G) =
∑

i∼j
(d
−1/2
i − d−1/2j )2. (21)

This quantity is zero for regular networks, and it will increase as the differ-
ences between the degrees of adjacent nodes increase. This index could be
expressed by Laplacian matrix. Taking |d〉 = (d

−1/2
1 , d

−1/2
2 , . . . , d

−1/2
N ), this

heterogeneity index could be calculated as:

ρ′(G) =
∑

i∼j
(d
−1/2
i − d−1/2j )2 =

1

2
〈d−1/2|L|d−1/2〉 = n− 2

∑

i∼j
(didj)

−1/2. (22)

The lower bound of ρ′(G) is attained for regular graphs, which is zero, and
the upper bound is attained for star graphs, which is |V | − 2

√
|V | − 1. In

this way, the normalized heterogeneity index is written as:

ρ(G) =

∑
i∼j(d

−1/2
i − d−1/2j )2

|V | − 2
√
|V | − 1

, (23)

where 0 ≤ ρ(G) ≤ 1.
An interesting problem is how to reduce the network heterogeneity as fast

as possible by removing nodes. It is regarded that the star network which
has only one center node and N − 1 leaves has the highest heterogeneity and
the ρ(G) equals to 1. Removing the center is the fastest method to reduce
the heterogeneity of the star network and ρ(G) will decrease to zero, which
makes sense since obviously the center node is the most heterogeneous one.
Yet in real world, the networks are much more complex than star networks
and it is hard to find the centers or hubs. Also, although nodes in the
regular networks have the same degrees, the structure of the network could
be various, which makes the statuses of nodes in networks vary a lot. The
hubs are not determined by degree anymore. More information is required
to accurately signify the node importance and significance.

We proposed to apply node entropy heterogeneity to this problem. Firstly
the HE of all nodes are calculated and node with the highest HE value is
removed from the network, and then the same process is repeated until the
desired heterogeneity is achieve.
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Figure 3a shows the variations of ρ(G) as nodes are removed in ER net-
works. The HE is compared to several other indices on the same networks:
DC, BC, CC, eigenvector centrality (EC) [36], Page Rank (PR) [17], high
degree adaptive (HDA), and collective influence (CI) [18]. It is illustrated
that the node entropy heterogeneity outperforms all the other ones. Similar
results are shown in scale-free (SF) [37] networks in Figure 3b.

0 50 100 150 200
Number of Deleted Nodes

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(G
)

DC
BC
CC
CI
EC
PR
HDA
H

E

0 50 100 150 200
Number of Deleted Nodes

0

0.05

0.1

0.15

0.2

0.25

0.3

(G
)

DC
BC
CC
CI
EC
PR
HDA
H

E

40 80 120 160 200
0.05

0.13

40 80 120 160 200
0.03

0.19

a b

Figure 3: a. ρ(G) in ER network. The results are the average values of 20 ER networks.
Each network contains 1,000 nodes and 2,000 edges. The performances of degree central-
ity, betweenness centrality, closeness centrality, collective influence, eigenvector centrality,
Page Rank, high degree adaptive and node entropy heterogeneity are represented in dif-
ferent colors. Inside figure presents several error bars of the data. b. ρ(G) in SF network.
The points are the average of 20 network with 1,000 nodes and γ = 3. Inside figure
presents several error bars of the data.

According to definition, an ER network is composed by nodes and links
between each pair of nodes with the same probability, thus the node de-
grees are similar to each other and the whole network looks homogeneous
in their connection pattern. That’s why compared to SF networks, the ER
networks own lower ρ(G) values and the centralities work less effective in
reducing the heterogeneity of networks. Yet it is observed that the node
entropy heterogeneity works well in both ER and SF networks and it could
efficiently capture the nodes with high heterogeneity and increase the net-
work homogeneity. In the SF networks, the similar effects are observed in
several measurements including DC, BC, HDA and PR. That’s because there
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exist extremely high-degree nodes, and the heterogeneity of the whole net-
work concentrates on these hubs, which leads to similar findings by these
centrality.

3.2. Average Clustering Coefficient

Another fascinating phenomenon related to the node entropy heterogene-
ity is the variation in average clustering coefficient. The global average clus-
tering coefficient of a network is defined as C̄ = 1

n

∑n
i=1Ci, where Ci is the

clustering coefficient (CLC) of node vi

Ci =
2|{(vj, vk) ∈ E : (vi, vj) ∈ E, (vi, vk) ∈ E}|

di(di − 1)
, (24)

which indicates how well the neighbors of node vi are connected. This index
is also a measurement of network heterogeneity concerning the connection
of node neighbors. If the neighbors of a node are highly connected, then
this node owns high CLC and it is safe to say that the local region where
this node belongs to is dense, which means connective heterogeneity in this
region compared to low CLC ndoes.

In the random geometric graphs (RGGs) [38], every time a nodes with the
highest HE is removed, the global average clustering coefficient is calculated.
We find that in the comparison with others including PR, DC, CC, CLC, EC,
theHE brings a much more rapid decrease of C̄ (Figure 4a). It is worth noting
that the reduction caused by HE is even more significant than by CLC itself,
which suggests that the removal by the node entropy heterogeneity brings
more structural damages than others to RGGs. This phenomenon does not
appear in SF networks and ER networks.

Actually, this phenomenon is deeply related to the special topological
features of RGGs. The RGGs are the networks whose nodes are scattered
randomly in d-dimension space. If the distance between two nodes is less
than a specific threshold r, then these two nodes are linked. One of the most
important property of RGGs is that the cluster or modularity structure is
striking and there are a lot of large or small clusters in each RGG. Nodes
inside each cluster are densely connected and less connected to outliers. This
point is also supported by the significance of BC in reducing the size of giant
component (Figure 4c) since the BC breaks down the giant components fast,
which means there are a few nodes working as bridges between clusters and
own highest BC values.
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Figure 4: a. Average clustering coefficient in RGGs. The results are the average val-
ues of 20 RGGs. Each network contains 1,000 nodes scattered in a 3-dimension space
and the average degree around 4.3. The performances of degree centrality, betweenness
centrality,closeness centrality, collective influence, eigenvector centrality, PageRank, HDA,
clustering coefficient, and node entropy heterogeneity are represented in different colors.
Inside figure presents several error bars of the data. b. The variations of the von Neumann
entropy in RGGs. c. Size of giant connective component in RGGs.

Figure 5 shows a cluster composed of seven nodes. By definition, cluster-
ing coefficients of nodes v1 to v6 are all 2

C2
3

= 2
3

and node v7 is 6
C2

6
= 2

5
. Yet

when node v7 which owns the highest HE is removed, the C̄ of this whole
cluster is brought down to zero. That’s the reason why the node entropy
heterogeneity causes larger reduction in average clustering coefficient than
CLC to RGGs in the experiments. Also, this phenomenon suggests that HE

does obtain the centre nodes or hubs in the networks efficiently and is able
to break down the cluster structures rapidly.
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Figure 5: An example of cluster. Node v7 owns the lowest clustering coefficient, yet
removing node v7 will decrease the C̄ to 0.

3.3. General Relativity and Quantum Cosmology collaboration network

To apply our discoveries above, experiments of Estrada heterogeneity and
average clustering coefficients are conducted on the General Relativity and
Quantum Cosmology (GR-QC) collaboration network [46]. This network is a
paper co-authorship network and captures the papers of the GR-QC category
on arXiv from January 1993 to April 2003. The nodes in the network stand
for researchers and if two researcher co-author one paper, then there will be
an edge between the two nodes. Results on this network are presented on
Figure 6.

As we could see, in accordance with the results on random networks,
the HE is still the fastest method to reducing the Estrada heterogeneity
and average clustering coefficient. The HE method could capture the most
influential nodes in the networks accurately. Since the results on GR-QC
network are more similar to the SF networks than ER networks, we infer
that this network performs SF property to some extent. Also, removing
the most significant nodes found by HE could reduce the average clustering
coefficient fast. This means that this network performs similar topological
features to RGGs and there exist a number of small groups inside which the
connection is denser. These nodes play crucial roles in many collaboration
groups.
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Figure 6: a. ρ(G) in GR-QC network. This network contains 5,242 nodes and 14,496
edges. The performances of degree centrality, betweenness centrality, closeness centrality,
collective influence, eigenvector centrality, Page Rank, high degree adaptive and node
entropy heterogeneity are represented in different colors. b. Average clustering coefficient
in GR-QC network.

4. Conclusion and Discussion

In this paper the node entropy heterogeneity based on von Neumann en-
tropy is discussed, which makes it possible to study the significance of nodes
in the perspective of structural complexity and heterogeneity. By comparing
the heterogeneity of nodes with classical node centrality, it is shown that
the HE is an all-round measurement of node importance. By comparing the
changes of Estrada heterogeneity of networks and average clustering coef-
ficient with other heterogeneity indices when deleting high HE nodes, it is
concluded that this node entropy heterogeneity has an excellent performance
in breaking down network structure and can capture the significant features.

This index could be applied to find the most influential nodes in real-
world networks. It could be used to find the uneven parts in many kinds of
networks and help managers identify crucial nodes. For example, this method
could be applied to the markets networks to analyze the different roles played
by various participants. Also, this measurement could help identify some
topological features in the networks. More experiments on various networks
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with different structural characteristics are expected to uncover more features
of this index.

Another advantage of the node heterogeneity is that this definition could
be expanded to mesoscopic subjects, like motifs. In 2002, Alon et al. [39]
introduced the idea of motif when they were studying the gene network,
which is defined as the recurring, significant sub-networks and patterns in a
network, and it is discovered that the frequencies of some specific motifs in
realistic networks are much more significant by comparing with random net-
works [40]. Since motifs emphasize on the structure and connection patterns
which could not be found by only observing single nodes, node centralities
could not capture the structural characterizations completely. Also, for many
node centralities, like eigenvector centrality and closeness centrality, they are
hard to be generalized to motifs directly. The index provides an access to
evaluate and measure the significance of specific structure on the global net-
work and a new perspective to study network structural features.

Since a great number of real-world data is directed, it is worth defining
and researching the von Neumann on directed networks. Chung provided
a definition of Laplacian matrix on directed networks [41] using Perron-
Frobenius Theorem [20] and based on this work, Ye et al. [42] proposed
a method to approximate the von Neumann entropy of directed networks,
which allows us to compute the von Neumann entropy in terms of in-degree
and out-degree of nodes simply. However, these results only work on strongly-
connected directed networks. Another definition involving incidence matrix
[43], loses the direction information when calculating the Laplacian. It is still
an open problem to define the von Neumann entropy on directed networks
generally.
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